Скалярное произведение векторов: различия между версиями

Материал из Викиконспекты ПМ-ПУ
(Новая страница: «{{Определение |id=def1 |definition= ''Скалярным произведением'' $\vec{a}\cdot \vec{b}$ двух векторов $\vec{a}$ и $\v...»)
 
 
Строка 2: Строка 2:
|id=def1
|id=def1
|definition=
|definition=
''Скалярным произведением'' $\vec{a}\cdot \vec{b}$ двух векторов $\vec{a}$ и $\vec{b}$ называется произведение их модулей и косинуса угла между ними, то есть
''Скалярным произведением'' <math>\vec{a}\cdot \vec{b}</math> двух векторов <math>\vec{a}</math> и <math>\vec{b}</math> называется произведение их модулей и косинуса угла между ними, то есть <math>\vec{a}\cdot \vec{b}= \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cos \varphi</math>.  
\vec{a}\cdot \vec{b}= |\vec{a}|\cdot |\vec{b}|\cos \varphi .  
}}
}}

Текущая версия на 23:44, 21 октября 2021

Определение:
Скалярным произведением [math]\displaystyle{ \vec{a}\cdot \vec{b} }[/math] двух векторов [math]\displaystyle{ \vec{a} }[/math] и [math]\displaystyle{ \vec{b} }[/math] называется произведение их модулей и косинуса угла между ними, то есть [math]\displaystyle{ \vec{a}\cdot \vec{b}= \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cos \varphi }[/math].